Bauer ketones 23 and 24 from Echinacea paradoxa var. paradoxa inhibit lipopolysaccharide-induced nitric oxide, prostaglandin E2 and cytokines in RAW264.7 mouse macrophages.

نویسندگان

  • Xiaozhu Zhang
  • Ludmila Rizshsky
  • Catherine Hauck
  • Luping Qu
  • Mark P Widrlechner
  • Basil J Nikolau
  • Patricia A Murphy
  • Diane F Birt
چکیده

Among the nine Echinacea species, E. purpurea, E. angustifolia and E. pallida, have been widely used to treat the common cold, flu and other infections. In this study, ethanol extracts of these three Echinacea species and E. paradoxa, including its typical variety, E. paradoxa var. paradoxa, were screened in lipopolysaccharide (LPS)-stimulated macrophage cells to assess potential anti-inflammatory activity. E. paradoxa var. paradoxa, rich in polyenes/polyacetylenes, was an especially efficient inhibitor of LPS-induced production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) by 46%, 32%, 53% and 26%, respectively, when tested at 20 μg/ml in comparison to DMSO control. By bioactivity-guided fractionation, pentadeca-8Z-ene-11, 13-diyn-2-one (Bauer ketone 23) and pentadeca-8Z, 13Z-dien-11-yn-2-one (Bauer ketone 24) from E. paradoxa var. paradoxa were found primarily responsible for inhibitory effects on NO and PGE2 production. Moreover, Bauer ketone 24 was the major contributor to inhibition of inflammatory cytokine production in LPS-induced mouse macrophage cells. These results provide a rationale for exploring the medicinal effects of the Bauer ketone-rich taxon, E. paradoxa var. paradoxa, and confirm the anti-inflammatory properties of Bauer ketones 23 and 24.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endogenous levels of Echinacea alkylamides and ketones are important contributors to the inhibition of prostaglandin E2 and nitric oxide production in cultured macrophages.

Because of the popularity of Echinacea as a dietary supplement, researchers have been actively investigating which Echinacea constituent or groups of constituents are necessary for immune-modulating bioactivities. Our prior studies indicate that alkylamides may play an important role in the inhibition of prostaglandin E2 (PGE(2)) production. High-performance liquid chromatography fractionation,...

متن کامل

Enrichment of Echinacea angustifolia with Bauer alkylamide 11 and Bauer ketone 23 increased anti-inflammatory potential through interference with cox-2 enzyme activity.

Bauer alkylamide 11 and Bauer ketone 23 were previously found to be partially responsible for Echinacea angustifolia anti-inflammatory properties. This study further tested their importance using the inhibition of prostaglandin E(2) (PGE(2)) and nitric oxide (NO) production by RAW264.7 mouse macrophages in the absence and presence of lipopolysaccharide (LPS) and E. angustifolia extracts, phytoc...

متن کامل

Effects of Morus alba leaf extract on the production of nitric oxide, prostaglandin E2 and cytokines in RAW264.7 macrophages.

Morus alba leaf methanolic extract and its fractions (chloroform, butanol, and aqueous fractions) were found to inhibit NO production in LPS-activated RAW264.7 macrophages without an appreciable cytotoxic effect at concentration from 4 to 100 microg/ml. LPS-induced PGE2 production was significantly reduced only by butanol fraction. In addition, M. alba leaf extract and its fractions significant...

متن کامل

Echinacea species and alkamides inhibit prostaglandin E(2) production in RAW264.7 mouse macrophage cells.

Inhibition of prostaglandin E(2) (PGE(2)) production in lipopolysaccharide-stimulated RAW264.7 mouse macrophage cells was assessed with an enzyme immunoassay following treatments with Echinacea extracts or synthesized alkamides. Results indicated that ethanol extracts diluted in media to a concentration of 15 microg/mL from E. angustifolia, E. pallida, E. simulata, and E. sanguinea significantl...

متن کامل

Viridicatol from Marine-derived Fungal Strain Penicillium sp. SF-5295 Exerts Anti-inflammatory Effects through Inhibiting NF-κB Signaling Pathway on Lipopolysaccharide-induced RAW264.7 and BV2 Cells

− Viridicatol (1) has previously been isolated from the extract of the marine-derived fungus Penicillium sp. SF-5295. In the course of further biological evaluation of this quinolone alkaloid, anti-inflammatory effect of 1 in RAW264.7 and BV2 cells stimulated with lipopolysaccharide (LPS) was observed. In this study, our data indicated that 1 suppressed the expression of well-known pro-inflamma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Phytochemistry

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2012